

Sicolek.

SilcoTek High Purity Coatings from science to performance

Why use coatings?

High Purity

- Reduce system corrosion
- Eliminate ion contamination
- Reduce moisture effects
- Reduce vacuum pump down time

Applications for High Purity SilcoTek Coatings

- Bio/pharma
- Analytical
- Semiconductor manufacturing
- Vacuum, and more

SilcoTek Solutions

Silicon-based

- Silcolloy
 - US Patent #7,070,833
 - Amorphous, hydrogenated silicon (a:Si-H)
 - 400-800 nm typical thickness

Silicon oxide-based

- Dursan
 - US Patent Pending
 - Silicon oxide from organic source gas
 - 300-1500 nm typical thickness
 - Functionalized and non-functionalized available

Process Outline

- Coatings applied to stainless steel and chrome/moly/nickel alloys
- Chemical Vapor Deposition process
- Customer supplied parts
 - Either direct from OEM (mass flow controllers/regulators)
 - End user (custom components)
 - Fabricators (weldments/assemblies)
- Surface Preparation
- Vacuum deposition process
 - Non-line-of-site
 - Batch process
- 100% inspection
- Return

Silicon-based Coatings

Silicon-Oxide Dursan

Technique: X-Ray Photoelectron Spectroscopy (XPS)

Physical Properties of CVD coated surfaces

SilcoTek. Driving Innovation

Wear and Friction

	<u>Avg.</u> <u>Coeff.</u> <u>Friction</u>	Wear Rate (x10 ⁻⁵ mm ³ /Nm)
Uncoated SS	0.589	13.810
Si _x O _y -base (functionalized)	0.378	6.129
Si-base (corrosion)	0.7	14.00

 ASTM G133 (Pin-on-Disc)
 Mirror Finish 316L SS

Experimental Parameters					
Load	2.0 N				
Duration	20 min				
Speed	80 rpm				
Radius	3mm				
Revolutions	1,554				
Ball Diameter	6mm				
Ball Material	SS 440				

CVD Coating Solutions

Material Properties Sheet

Property	Si-Based	Si _x O _y -Based	PTFE, PFA
Max Temperature	900°C	450°C	260°C
Min Temperature	-196ºC	-100°C	-240°C
Low pH limit	0	0	0
High pH limit	7	14	14
Thickness	0.12um to 0.8um	0.3um to 1.5um	25um
Adhesion	Very Good	Very Good	Poor
Wear resistance	~90% of SS	2x SS	~10% of SS
Moisture contact	72-90°	104-140°	125°
Inertness vs. SS	Excellent	Good	Excellent

Corrosion Resistance

Corrosion Resistance

Challenges

- Physical Losses
 - Maintenance & Replacement Cycles
- Increased Activity
- Metal Contamination

Solutions

- Extended Lifetimes
- Lower Reactivity
- Substrate Barrier

Corrosion Testing Results (ASTM G31)

	6M HCI		3M HCI		1M KOH		10% Sulfuric	
	MPY rate	factor	MPY rate	factor	MPY rate	factor	MPY rate	factor
316L SS	161.4	-	67.93	-	0.00	-	22.35	-
Dursan	2.2	75	5.14	13.2	0.01	261	2.42	9.9
Silcolloy	3.6	45	14.85	4.6	0.01	Dissolved	2.52	8.9

Corrosion Testing Results (ASTM G31)

	5% HF		70% Nitric		85% Phosphoric		25% Sulfuric	
	MPY rate	factor	MPY rate	factor	MPY rate	factor	MPY rate	factor
316L SS	120.00	-	0.78	-	0.62	-	54.64	-
Dursan	80.38	1.49	0.10	7.50	0.08	8.00	5.36	10.19
Silcolloy	44.26	2.71	0.36	2.14	0.28	2.18	23.62	2.31

Silcolek. BB) Driving Innovation

Corrosion Testing Results (ASTM G48B)

Sample	Initial Weight (g)	Final Weight (g)	Weight Loss (g)	Weight Loss (g/m ²)
Silcolloy Sample 17	10.4105	10.3710	0.0395	19
Silcolloy Sample 28	10.1256	10.0743	0.0513	25
Silcolloy Sample 47	10.1263	10.0742	0.0521	25
Bare Sample 27	10.0444	9.5655	0.4789	231
Bare Sample 34	10.1265	9.6923	0.4342	209
Bare Sample 37	10.1007	9.6276	0.4731	228

Pitting & Crevice Corrosion

- 6% Ferric Chloride
- ➢ 72 hrs @ 20C
- Gasket Wrapped

Corrosion Testing Results (ASTM B117)

Salt Spray

- 4000 hour exposure
 - 100 F
 - 3.5% by weight sodium chloride
- No Effect on Silcolloy Coating
- Reproduction of Exposure to Marine Environments

Reduce cross contamination, carryover and adsorption

Chemical Inertness

- Low reactivity with wide range of chemicals
 - Sulfurs, Ammonia, Mercury
- Allows low level (ppm-to-ppb) contamination monitoring
 - Petrochemical refining, Oil & Gas, LNG production/transfer, Emissions & Air monitoring
- Quick recovery after process upsets

Functionalized silicon (SN2000) good to single-digit ppb detection levels!

"Wet-Up" Moisture Detection

"Dry-Down" Moisture Removal

Hydrophobicity Measurement

Decrease system pump down time

SilcoGuard:

 Ultra-High-Vacuum (UHV) environments (1x10⁻⁷ Torr or better)

- Materials outgas into the vacuum environment.
- Outgassing increases pressure in the chamber (directly related to dry down data)
- Requires large pumps and long "pump down" times
- SilcoGuard blocks materials from outgassing into the vacuum environment.

Comparative Evacuation Rates

SilcoGuard Advantages

- Consistently outperforms cleaned parts for ability to pump down faster: No need to clean
- Eliminates bake out of components as received from manufacturer
- Ability to achieve lower base pressure with smaller pumps
- Faster process cycle time vs. uncoated systems
- Superior high temperature stability up to 600° C

Overall Coating Applications

- University/Research
 - Coating of accelerator chambers to create higher vacuum environment
- Semiconductor
 - Use in coating of semi-conductor manufacturing equipment to decrease defect rate
- Analytical
 - Reduce time needed to achieve high vacuum environments in analytical equipment (SEM, XPS, etc.,.)
- Bio/pharma
 - Improve surface properties of probes, tips, dies, metal tubing, analytical instrumentation, tools, and more

Conclusion

- Coatings are available for a wide range of applications
- Optimize based on desired property
 - Inertness
 - Corrosion Resistance
 - Anti-Fouling
 - Purity
- Ultimate benefit is superior performance
 - Analytical results
 - Extend life
 - Reduce labor and capital cost
 - Improve efficiency
 - Optimize material selection and cost performance

Contact Us

• Phone: +1 814-353-1778

Email: <u>SilcoD@SilcoTek.com</u>

Web: www.SilcoTek.com

Learn More

- White paper
 - Low Outgassing of Silicon Coatings on Stainless
 Steel Surfaces for Vacuum Applications
- Blog
 - <u>Click here</u> to read various technical insights about our high purity coatings
- Learn more about our coatings