Adsorption of ammonia on metal and polymer surfaces

Olavi Vaittinen¹,
Markus Metsälä¹, Stefan Persijn², Markku Vainio¹,³ and Lauri Halonen¹

¹ University of Helsinki, Finland
² VSL, The Netherlands
³ MIKES, Finland
Ammonia standard (9 ppm NH$_3$ in N$_2$) diluted with *indoor air* (10000 ppm H$_2$O), total flow 1000 sccm
Variables

Test tube coating: stainless steel 316L, electro-polished SS 316L, SilcoNert 1000, SilcoNert 2000, Dursan, PFA, FEP, PTFE, PELD, PVDF

NH$_3$ concentration: 10 ppb – 9 ppm (400 or 9000 ppb)
Flow rate: 0 – 2000 sccm (200 or 1000 sccm)
Temperature: 295 – 333 K (295 K)
Water content: 0 – 1 % (25 ppm)
Gas generation setup

\[\text{N}_2 \] \quad \text{MFC} 190 \quad \text{Test tube} \quad \text{To CRDS} \\
\quad \text{NH}_3 \quad \text{MFC} 10 \quad \text{3-way valve} \quad \text{By-pass} \\
\quad \text{H}_2\text{O} \quad \text{MFC} 0 \quad \text{3-way valve} \\

9 ppm in N\text{_}2

1 %
A) Test tube is flushed with indoor air (≥1 h) and pure N\textsubscript{2} (≥0.5 h)

B) Vacuum line and ring-down cavity (except test tube) are exposed to NH\textsubscript{3} (in N\textsubscript{2})

C) Concentration of ammonia is measured after ~1 h

D) Actual real-time adsorption measurement at 6548.79 cm-1 in 3 phases:

1) Ammonia gas flow via by-pass line
2) Ammonia flow switched to go via test tube
3) Slow recovery of ammonia signal
Shaded area = Adsorption + Gas exchange

Dursan, 420 ppb
A (SN2000) = 530 ppbs
A (316L) = 13500 ppbs
Adsorption on metal / coated surfaces

<table>
<thead>
<tr>
<th>Metal / coating</th>
<th>Adsorption* $(10^{12}$molecules/cm2)</th>
<th>St. deviation $(10^{12}$molecules/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SilcoNert 2000</td>
<td>5.7</td>
<td>0.6</td>
</tr>
<tr>
<td>SilcoNert 1000</td>
<td>14.6</td>
<td>0.9</td>
</tr>
<tr>
<td>EP SS316L</td>
<td>72</td>
<td>11</td>
</tr>
<tr>
<td>Dursan</td>
<td>101</td>
<td>5</td>
</tr>
<tr>
<td>SS316L</td>
<td>138</td>
<td>21</td>
</tr>
</tbody>
</table>

*Average of 3 measurements
NH$_3$ conc = 420 ppb, p (tube) = 176 mbar
Adsorption on polymer surfaces

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Adsorption* $(10^{12}$molecules/cm2)</th>
<th>St. deviation $(10^{12}$molecules/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDF</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>PELD</td>
<td>4.4</td>
<td>0.6</td>
</tr>
<tr>
<td>PTFE</td>
<td>7.5</td>
<td>1.9</td>
</tr>
<tr>
<td>FEP</td>
<td>8.6</td>
<td>0.3</td>
</tr>
<tr>
<td>PFA</td>
<td>13.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*Average of 3 measurements
NH$_3$ conc = 8750 ppb, p (tube) = 119 mbar
Langmuir isotherm

Adsorption (molecules/cm2) vs. Concentration (µg/m3)
Effect of water

SS 316L

NH₃ adsorption (molecules / cm²)

H₂O concentration (ppmv)
Comparison to PTR-MS data*

CRDS:

SS > Dursan >> SN2000 > PFA

PTR-MS:

SS >> Dursan >> SN2000 > PFA

Ammonia transport through different tubings

SilcoTek Corporation, Sulfinert = SilcoNert 2000
Acknowledgements

The research was carried out with funding by EURAMET and the European Union.

The EMRP in jointly funded by the EMRP participating countries within EURAMET and the European Union.

More information: Olavi.Vaittinen@helsinki.fi