

ANALYTICAL REPORT Nanovea – TRB101217-30

Method: Nanovea Tribometer

Sample(s): Oxidized Steel, Carboxysilane Coated Steel

Customer: Silcotek

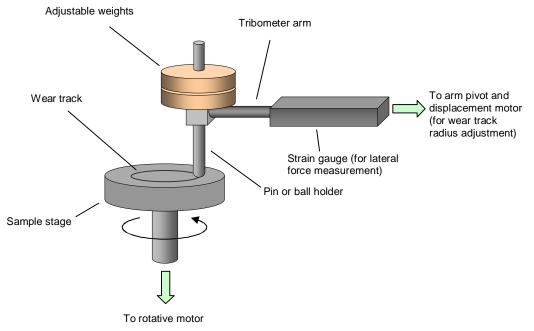
Author: Johanna Tchon

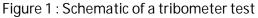
Date: 17 December 2010

6 Morgan, Ste156, Irvine CA 92618 · P: 949.461.9292 · F: 949.461.9232 · nanovea.com Today's standard for tomorrow's materials.

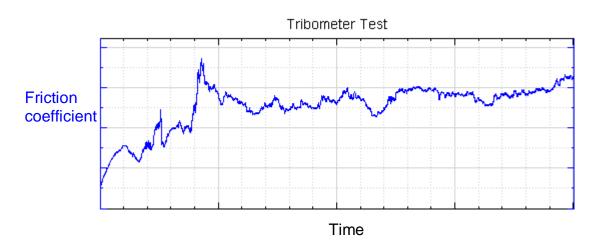
TRB TEST REPORT

Table of Contents


PIN on DISK TRIBOMETER (TRB)	3
Principle of pin-on-disk measurements	3
Test procedure and conditions	4
Test conditions	5
Test Parameters	5
Results	7
Coefficient of Friction Summary Table for All Samples @ 2N	7
Detailed Results for Oxidized Steel	7
Detailed Results for Carboxysilane Coated Steel	8



PIN on DISK TRIBOMETER (TRB)


Principle of pin-on-disk measurements

A flat or a sphere shaped indenter is loaded on to the test sample with a precisely known force. The indenter (a pin or a ball) is mounted on a stiff lever, designed as a frictionless force transducer. As the disk is rotated, resulting frictional forces acting between the pin and the disk are measured by very small deflections of the arm using a strain gage sensor. Wear coefficients for both the pin and sample are calculated from the volume of material lost during a specific friction run. This simple method facilitates the determination and study of friction and wear behavior of almost every solid state material combination, with varying time, contact pressure, velocity, temperature, humidity, lubrication, etc.

Figure 2 : Example of a friction curve in a tribometer test

Test procedure and conditions

The instrument base is first leveled in the horizontal position by screwing or unscrewing the adjustable rubber pads at each corner. A ball-holder containing a 3 or 6 mm diameter ball is held in the load arm and placed at a height that allow the tribometer arm to be leveled horizontally when resting on the sample to ensure that normal load will be applied vertically. The arm is then balanced with counter weights to ensure that the arm and ball holder initially apply no force on the sample surface. Finally, weights corresponding to the load required for the test are finely placed on the arm over the ball holder. Through software, the test is then launched and the test is performed at a specified speed for a specified duration, and the frictional force is recorded over time.

Test conditions

Test parameters

Testing was performed in accordance with ASTM G133, using the Nanovea Tribometer <u>Product Number: Nanovea TRB</u> <u>Serial Number: T-10-0102</u>

Sample	Steel Coupon	
Load	2.0 N	
Duration of test	20 min	
Speed rate	80 rpm	
Radius of track	3 mm	
Revolutions	1,554	
Ball Diameter	6 mm	
Ball Material	SS 440	

Environmental conditions

Lubricant	n/a
Atmosphere	Air
Temperature	23°C (room)
Humidity	35%

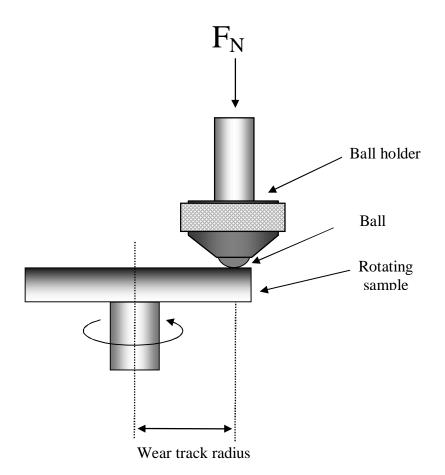


Figure 3 : Schematic of the contact on the sample

Results

This section includes the following results:

- Summary table of the main numerical results
- Graphs of coefficient of friction over time

Coefficient of Friction Summary Table for: All Samples @ 2N

Sample	Minimum Coefficient of Friction	Maximum Coefficient of Friction	Average Coefficient of Friction	Wear Rate [x10 ⁻⁵ mm ³ /Nm]
Oxidized Steel	0.000	0.927	0.589	13.810
Carboxysilane Coated Steel	0.000	0.725	0.378	6.129

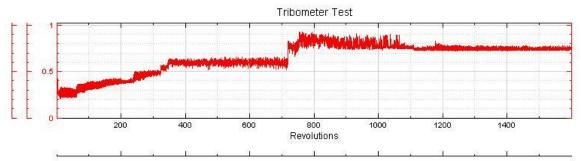
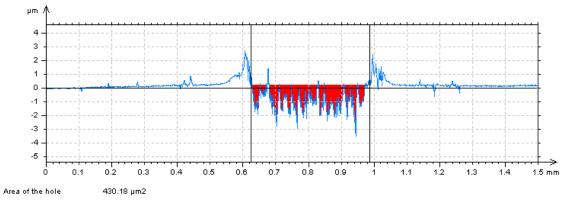
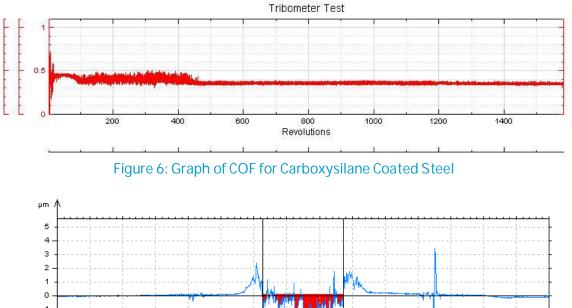




Figure 4: Graph of COF for Oxidized Steel

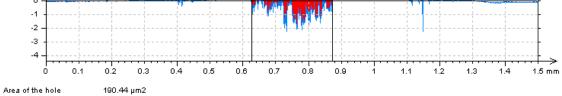


Figure 7: Area of the hole for Carboxysilane Coated Steel