

Amorphous Silicon Coatings for Control of Corrosion and Metal Ion Contamination

James B. Mattzela,

D.A. Smith, M. Yuan, J. Bischof, & L. Patterson

SilcoTek Corporation · Bellefonte, PA USA

Motivation

- Purity increasing in importance
- Pushing physical limits
 - Devices become smaller
 - Metal ion contamination more important
- Etch (and cleaning) chemistries
 - Number of removal steps increasing
 - Gas chemistries more aggressive
- Corrosion limits productivity

Image from Li, Y. and Quader, K.N. NAND Flash Memory: Challenges and Opportunities. *Computer* 2013, 46 (8), 23-29.

Silicon Coatings Technology

- Gas Chromatography
 - Robust alternative to glass columns
- Oil and Gas
 - Accurate ppm-to-ppb detection
- Environmental Sampling
 - Accurate ppm-to-ppb detection
- Corrosion Resistance
 - Affordable alternative to superalloys

Industrial CVD

- Commercialized process
- 3-D deposition allows coating of all surfaces
 - High aspect ratio
 - Complex geometries
- Bonded to substrate material
- Wide range of substrate materials
 - Stainless steel, glass, ceramics, aluminum, superalloys
- Scalable process
 - Fittings to chambers
- Thin coating: ~100 nm up to nearly 2 μm
 - Does not impact drawing dimensions or tolerances

Advantages

- Thermally stable
 - Wide operating temperature range
- Reasonable cost
 - Superalloys are much more expensive
- Environmentally known
 - Silicon is a primary material
- Amorphous
 - Conformal over edges
 - Allows for mechanical flexing
- Low outgassing
 - Vacuum compatible
 - Barrier to substrate effects (moisture or outgassing)

Coatings Composition

Improved Vacuum Pumpdown

Coatings Composition

Game-Changing Coatings™

Corrosion Testing

- Follow ASTM G31-72(2004) "Standard Practice for Laboratory Immersion Corrosion Testing of Metals"
- Measure Mass Loss During Immersion
- Calculate Corrosion Rate in mils per year (mpy)

HCI Corrosion Testing

- Test Conditions
 - 6 M HCI
 - Room temperature solution
 - 24 hrs of exposure

200

Elevated Temperature HCI Corrosion Testing

- Test Conditions
 - 6 M HCI
 - 50° C solution

3500

HBr Corrosion Testing

- Test Conditions
 - 6 M HBr (gas dissolved in DI Water)
 - Room temperature solution
 - 72 hrs of exposure

3.39

Data Extrapolation

• How long will the coating last in service?

Typical Maintenance Cycle – 3,000 RF Hours

Improvement of coated vs uncoated is ~7.21x (using exposure to 6 M HBr for 72 hrs at r.t.)

Possible Lifetime Extension – 23,000+ RF Hours

Plasma Exposure

- 50 W SF₆ remote plasma exposure (3 min exposure)
- Stainless steel appears to begin to pit
- Some etching of silicon

Conclusions

- Amorphous, hydrogenated silicon can be used as a barrier coating for gas delivery in both etch and deposition environments.
- CVD deposition of a-Si:H offers unique benefits including non-lineof-sight deposition on existing components and good adhesion to a wide variety of commonly used materials.
- Additional benefits from a-Si:H deposition may be seen in low outgassing of surfaces in vacuum and low particulate creation from gas-surface interactions.

Future Directions

- Develop method for characterizing gas corrosion
- Develop method for characterizing coating lifetime in direct plasma environment

