

Game-Changing Coatings[™] for Improving Pharmaceutical and Biopharmaceutical Processes

SilcoTek's History & Technology

1987: Restek invents SilcoSteel to make metal GC capillaries behave like glass.

2009: Demand for Restek
 Performance Coatings outside
 of chromatography grows to a
 point where a separate
 company is necessary for
 continued growth.
 SilcoTek Corporation is born.

1990-2000: "Restek Peformance Coatings" team is formed, dedicated to CVD coatings and exploring new areas where the technology can help solve customers' problems.

2013: 36,000 ft² state-of-the-art coating facility is built to meet capacity demands.

SilcoTek Today

► 65+ local & remote employees with a desire to:

"Create a better world through our coatings."

- Over 130 patents and patent filings on chemical vapor deposition (CVD) coatings technology
- ISO 9001:2015 certified 80,000 ft.² coating service facility in Pennsylvania with further expansion planning underway
- Coating mission-critical components in:
 - Semiconductor Manufacturing
 - Analytical Chemistry
 - Life Sciences

Silcole

Energy Production, Storage, and Exploration

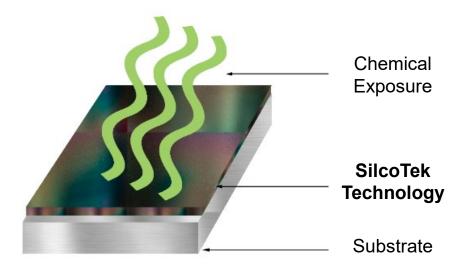
CVD Coating Process Animation

https://www.silcotek.com/hubfs/Videos/CVD%20process%20animation.mp4

Silcolek.

Benefits of the SilcoTek CVD Process

	in the second se	Commercialized process	Thousands of parts coated daily for diverse array of customers.				
	٩	3-D deposition allows coating of all surfaces	Effectively coat high aspect ratios and complex geometries.				
	ii I	Superior adhesion	Coating does not flake and can be flexed without damage.				
	*	Wide range of substrate materials	Stainless steel, glass, ceramics, aluminum, superalloys.				
	L.	Scalable process	Miniature components to large reactors and bulky parts.				
	Ś	Thin coating: ~100 nm up to nearly 2 μm	Does not impact drawing dimensions or tolerances.				


SilcoTek's Patented Technologies

Surface property enhancement via CVD technology:

- Silicon-based foundation layer
- Surface functionalization or modification
- Materials characterization and testing

Custom development

Base Layer	Functionalization Options					
Options	None	-C _x H _y				
a-Si:H	Silcolloy®	SilcoNert®				
a-SiO _x :CH _y	Dursox®	Dursan®				
a-SiN	Siltride®	R&D				

6

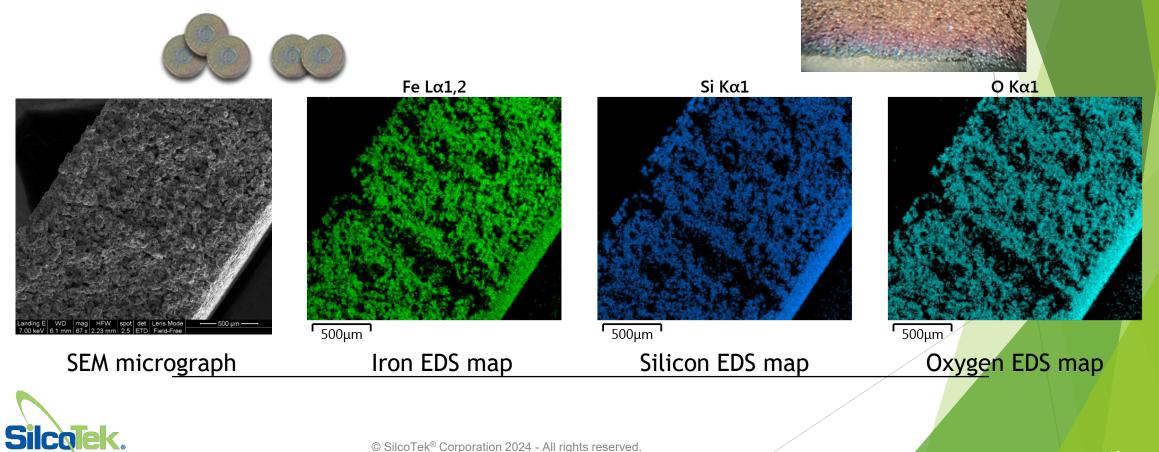
Key Benefits of Dursan® other SilcoTek surfaces in Bio/Pharmaceuticals

- Surface treatment is FDA compliant, USP Class VI and NSF certified
- Applicable to any BPE flow path component, including tubes up to 24' long
- Penetrates and bonds to equipment surfaces molecularly, preventing flaking
- Does not change ASME-BPE surface designation, can be applied to SF0-SF6
- Vapor phase surface treatment process uniformly treats 100% of surfaces
- Significantly lower cost and lead time than exotic alloys
- Easy process send SilcoTek your equipment and we handle the rest

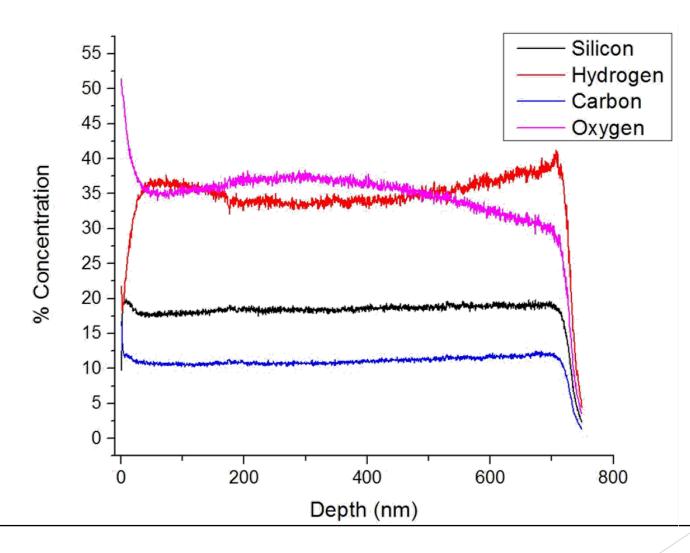
- Silica-like material (similar to hybrid silicas used in HPLC)
- Non-line of sight coating (coats everywhere the gas can get to)
- pH range: 0-14

- Typical thickness 400 1600 nm (thinner in small geometries)
- 450°C temperature limit
- Inert to most chemicals and 2x the wear resistance of steel

© SilcoTek[®] Corporation 2024 - All rights reserved.


Dursan® Compared to Alternatives

Key Criteria	SilcoTek®- Treated Stainless Steel	Polymer Coatings	Electropolished Stainless Steel	C-22 and AL- 6XN
Resistance to rouging and corrosion	Excellent	Excellent	Good	Excellent
Ease of cleaning	Excellent	Fair	Good	Fair
Inertness to sensitive compounds	Excellent	Excellent	Poor	Poor
Adhesion and durability	Excellent	Poor	N/A	N/A
Cost and Lead Time Excellent Effectiveness		Good	Excellent	Poor



Illustrating non-line-of-sight coating:

Cross section of a 2µm nominal pore size frit after Dursan coating:

Dursan® Coating Composition (SIMS)

Dursan® NSF Certification

NSF International

789 N. Dixboro Road, Ann Arbor, MI 48105 USA

RECOGNIZES

SilcoTek Corporation

Bellefonte, PA

AS COMPLYING WITH NSF/ANSI 51 AND ALL APPLICABLE REQUIREMENTS. PRODUCTS APPEARING IN THE NSF OFFICIAL LISTING ARE AUTHORIZED TO BEAR THE NSF MARK.

ANSI	
ANSI Accredited Program Product CERTIFICATION #8216	
Certification Program Accredited by the	
American National Standards Institute	

Certification Program Accredited by the Standards Council of Canada

This certificate is the property of NSF International and must be returned upon request. This certificate remains valid as long as this client has products in Listing for the referenced standards. For the most current and complete Listing information, please access NSF's website (www.nsf.org).

November 10, 2016 Certificate# C0109392 - 02

Sarah Krol Global Managing Director, Food Safety Product Certification

© SilcoTek® Corporation 2024 - All rights reserved.

Dursan® USP Class VI Certification

PEOPLE > SCIENCE > SOLUTIONS		Test Facility 6750 Wales Road Northwood, OH 43619 419.666.9455
TEST ARTICLE NAME		
Dursan® coated samples	SPONSOR	
EST ARTICLE IDENTIFICATION	Rick Edmiston	
COUPONS	SilcoTek Corporation	
	225 PennTech Drive	
EST ARTICLE PHYSICAL DESCRIPTION 32.66 CM ² and 1mm x 10mm	Bellefonte, Pennsylvania 16823	
2.00 CM and thin x rollin		
TEST ARTICLE RECEIVED		
une 16, 2020		
USP	Biological Reactivity Tests, <i>In Vivo</i> USP Plastic Class VI	
JSP Systemic Toxicity Study in the Mouse The test article was prepared as indicated belov	USP Plastic Class VI w and injected into mice. The saline, alcohol in salin	
USP Systemic Toxicity Study in the Mouse The test article was prepared as indicated belo and sesame oil extracts did not produce a signi	USP Plastic Class VI	
USP Systemic Toxicity Study in the Mouse The test article was prepared as indicated below and sesame oil extracts did not produce a signi USP Intracutaneous Toxicity Study in the Rabbit	USP Plastic Class VI wand injected into mice. The saline, alcohol in salin ficantly greater systemic reaction than the blank extra	actants.
USP Systemic Toxicity Study in the Mouse The test article was prepared as indicated belor and sesame oil extracts did not produce a signi USP Intracutaneous Toxicity Study in the Rabbit The test article was prepared as indicated belor	USP Plastic Class VI w and injected into mice. The saline, alcohol in salin	actants.
USP Systemic Toxicity Study in the Mouse The test article was prepared as indicated belor and sesame oil extracts did not produce a signi USP Intracutaneous Toxicity Study in the Rabbit The test article was prepared as indicated belor polyethylene glycol 400 and sesame oil extract	USP Plastic Class VI w and injected into mice. The saline, alcohol in salin ficantly greater systemic reaction than the blank extra w and injected intracutaneously into rabbits. The sali	actants.
USP Systemic Toxicity Study in the Mouse The test article was prepared as indicated belor and sesame oil extracts did not produce a signi USP Intracutaneous Toxicity Study in the Rabbit The test article was prepared as indicated belor polyethylene glycol 400 and sesame oil extract USP Muscle Implantation Study in the Rabbit	USP Plastic Class VI w and injected into mice. The saline, alcohol in salin ficantly greater systemic reaction than the blank extra w and injected intracutaneously into rabbits. The sali	actants. ine, alcohol in saline, on than the blank extractants.
USP Systemic Toxicity Study in the Mouse The test article was prepared as indicated below and sesame oil extracts did not produce a signi USP Intracutaneous Toxicity Study in the Rabbit The test article was prepared as indicated below polyethylene glycol 400 and sesame oil extract USP Muscle Implantation Study in the Rabbit The macroscopic reaction of the test article, in USP negative control plastic.	USP Plastic Class VI w and injected into mice. The saline, alcohol in salin ficantly greater systemic reaction than the blank extra w and injected intracutaneously into rabbits. The sali is did not produce a significantly greater tissue reaction	actants. ine, alcohol in saline, on than the blank extractants.
USP Systemic Toxicity Study in the Mouse The test article was prepared as indicated below and sesame oil extracts did not produce a signi USP Intracutaneous Toxicity Study in the Rabbit The test article was prepared as indicated below polyethylene glycol 400 and sesame oil extract USP Muscle Implantation Study in the Rabbit The macroscopic reaction of the test article, in USP negative control plastic. The test article was prepared at a ratio of 6 cm	USP Plastic Class VI w and injected into mice. The saline, alcohol in salin ficantly greater systemic reaction than the blank extra w and injected intracutaneously into rabbits. The sali is did not produce a significantly greater tissue reaction uplanted in rabbit muscle for 1 week, was not signific	actants. ine, alcohol in saline, on than the blank extractants.
JSP Systemic Toxicity Study in the Mouse The test article was prepared as indicated below ind sesame oil extracts did not produce a signi JSP Intracutaneous Toxicity Study in the Rabbit The test article was prepared as indicated below oolyethylene glycol 400 and sesame oil extract JSP Muscle Implantation Study in the Rabbit The macroscopic reaction of the test article, in USP negative control plastic. The test article was prepared at a ratio of 6 cm requirements of a USP Plastic Class VI.	USP Plastic Class VI w and injected into mice. The saline, alcohol in salin ficantly greater systemic reaction than the blank extra w and injected intracutaneously into rabbits. The sali is did not produce a significantly greater tissue reaction uplanted in rabbit muscle for 1 week, was not signific	actants. ine, alcohol in saline, on than the blank extractants.

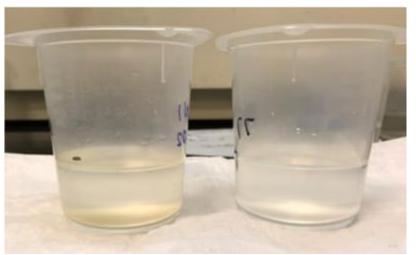
P.O. No.: PO102464	Lab Number: 20T_45823_10	

TCLAS_VI7

Data of interest: Corrosion resistance

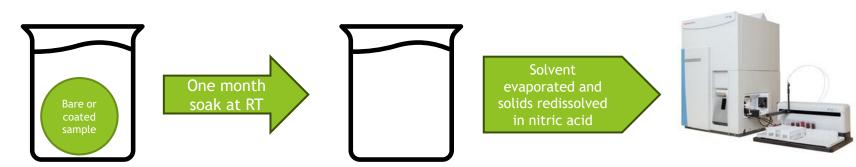
Corrosive media	Bare Stainless Steel (MPY)	Dursan coated steel (MPY)	Improvement multiplier	120 - - 100 -	Corros	sion in 6	6M HC	l for 24 h	rs	
6M HCl @ 50°C	3116.1	23.5	133x	rate (mpy)						
Concentrated H_2SO_4	78.45	0.15	523x	- 00 Corrosion r - 05						Inconel®
48% HBr	2.05	0.29	7x	- 20			Silo	oTek®	Monel®	
Bleach	1.70	0.10	17x		Haste	lloy®	Coa	atings		
Concentrated H ₃ PO ₄ @ 80°C	2.14	0.53	4x	0 -	C276	C22	Dursan	SL1000 Substrate	M400	1718
2% TFA	No corrosion, became hydrophobic	Unaffected (TFA did not stick to surface)	-		AP392 B 2 3 1 5	GR051 01		A 9 207	0	OP

© SilcoTek® Corporation 2024 - All rights reserved.


Guanidine Hydrochloride: mild corrosion

Bare steel

Coated steel


Coupons were exposed to 6M guanidine HCl for one month at room temperature:

Bare steel showed minor rusting and the solution yellowed (iron leaching into solution)

Both the coated coupon and the solution it was held in showed no change over that time.

Metal ion leaching data

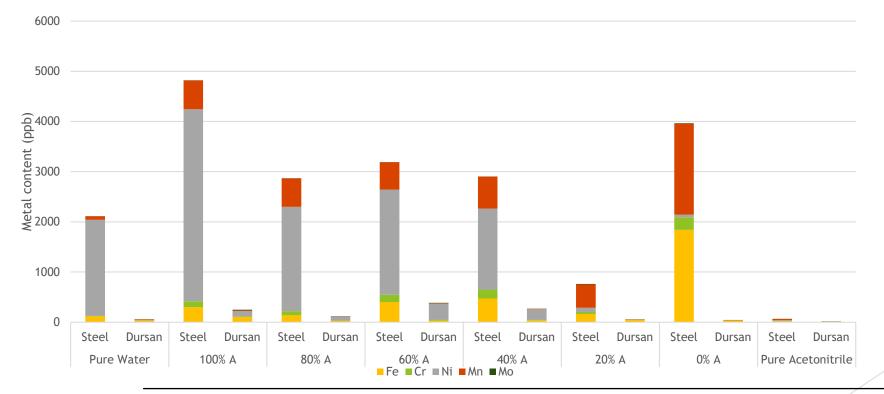
Metal lons leached into solution after a 1-month soak

	316 Stainless steel	Titanium	MP35N	C-22 Hastelloy	Our coated coupons			
UHPLC Grade DI water	Fe Cr Ni Mo	Ті	Ni Cr Mo Co	Fe Cr Ni Mo	All Metals			
UHPLC Grade methanol	Fe Cr Ni Mo	Ті	Ni Cr Mo Co	Fe Cr Ni Mo	All Metals			
UHPLC Grade acetonitrile	Fe Cr Ni Mo	Ті	Ni Cr Mo Co	Fe Cr Ni Mo	All Metals			
<1 ppb/m ² <100 ppb/m ² <1000 ppb/m ² >1000 ppb/m ²								

Oligonucleotide ion pairing solvents

UV compatible mobile phase

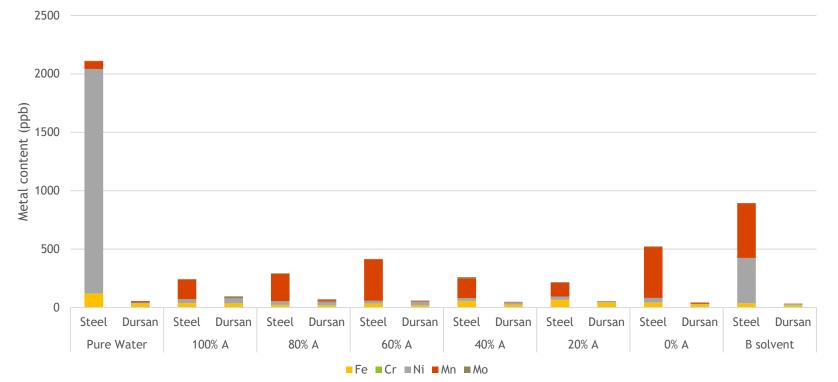
- Mobile phase A
 - 100 mM Triethylammonium acetate in water
- Mobile phase B
 - 100 mM Triethylammonium acetate in acetonitrile
- Gradient range
 - ► Typically between 5% B up to 100% B
- Temperature
 - ► Typically around 60°C

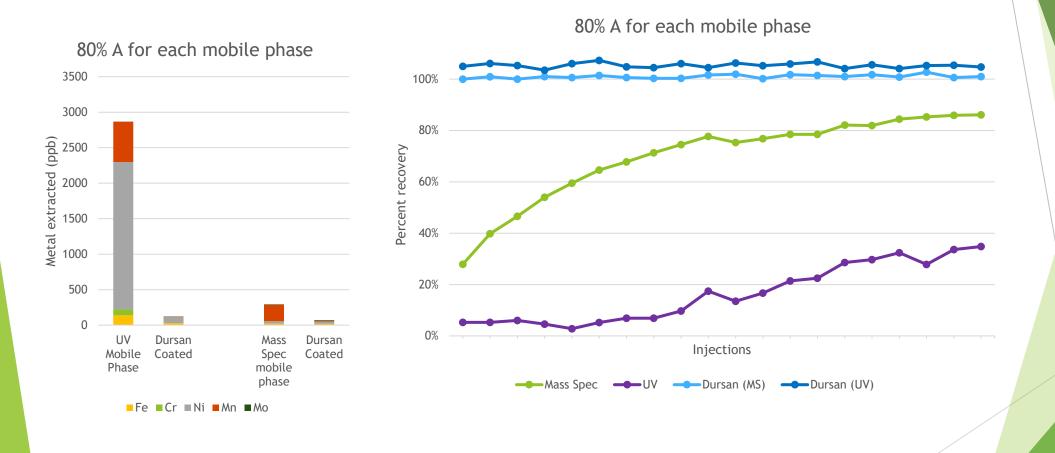

Mass spec compatible mobile phase

- Mobile phase A
 - 15 mM Triethylamine with 400 mM HFIP in water
- Mobile phase B
 - Mobile phase A + MeOH (50:50 v/v)
- Gradient range
 - ► Typically between 5% B up to 100% B
- Temperature
 - Typically around 60°C

UV Mobile Phase: TEAA in Water (A) and Acetonitrile (B)

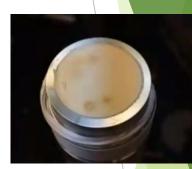
UV compatible mobile phase




Mass spec mobile phase TEA and HFIP in Water (A) and 50% MeOH (B)

Mass spec compatible mobile phase

21-mer oligonucleotide recovery study



Silcolek.

siRNA purification

- High pH and high salt content caused metal leaching into flow path
- The scientist was only able to do 6-8 injections per column
 - Too much on column degradation
 - ► Specifically: PS→PO oxidation
 - Impurities were lost in the noise
- Scientist opened the column afterwards and saw this:

After coating column hardware with Dursan

- We're happy to report that he has seen the following benefits using a coated column/system:
 - ▶ 100x lifetime improvement on the column (Each column is \$10K)
 - Higher loadability and recovery from the column
 - Far less oxidation of the oligos of interest leading to less on column degradation
 - Higher peak to valley ratios in the impurities
 - Makes automating fraction collection much easier

Other resources with coated HPLC hardware:

- Oligonucleotide recovery data. YMC's Accura line of columns are coated with Dursan
- Ion exchange columns. YMC recently released a line of ion exchange columns that show superior performance to PEEK (a plastic material)
- Lipid analysis. Trace levels of lipids require coated hardware, and once again Dursan outperforms PEEK.
- Analysis of phospholipid-enriched microenvironment. Dursan coating was necessary to limit metal interactions.
- New line of semi-preparative columns based on the work done with the siRNA scientist with the rusty column.

Life Sciences Coating Application Examples

- BPE flow paths
- Liquid chromatography analytical and preparatory columns
- Filters
- Sample probes
- Chambers, vessels, and mixers
- Glass vials
- Tubing and piping in both straight and coiled form
- Valves and fittings
- Custom parts

Thank you!

 \succ

+1 (814) 353-1778

patrick.dick@silcotek.com (Sales)
jesse.bischof@silcotek.com (Tech)

Silcolek.

www.SilcoTek.com

