

The chemical functionalization of DLC to create an oleophobic and hydrophobic surface with high thermal and oxidative stability

David Smith*, Jim Mattzela*‡, Min Yuan* and Paul Silvis*

*SilcoTek Corporation 112 Benner Circle Bellefonte, PA 16823

www.SilcoTek.com

[‡]Department of Materials Science & Engineering; Penn State University

University Park, PA 16802

http://www.mri.psu.edu/

Improve DLC Surface

- Short-term goal
 - Increase hydrophobicity and oleophobicity
 - Maintain after exposure to thermal oxidation
 - No detrimental effects to DLC tribology
- Long-term goal
 - Eliminate stiction in real-world applications
 - Deposits, fouling, coking, residuals
 - Mold release
 - Lower energy interactions with fluids / friction

DLC – 2 types

- DLC on Fuel Injector Needle Tip
 - Difficult test shape, proprietary formulation

- DLC Deposited on 304 stainless steel coupon (Richter Precision, Inc.)
 - TitanKote C14 ("C14 DLC"), non-hydrogenated
 - 1-3um; advertised friction coefficient (μ) = 0.06 0.15 (air?)
- Analytical characterization
 - Raman / XPS
 - Contact angle
 - Friction coefficient

Functionalized DLC suface

- Organofluoroalkoxysilane, vapor phase thermal bonding process (patent pending)
 - 3-dimensional functionalization on to all exposed surfaces and fine structure
 - Scalable for bulk processing
- "DLC-F"

Thermal Oxidation Exposure

- Simulation of environmental extremes
 - High temperature 300 C
 - Oxidative atmosphere Room air
 - Extended period 6hr or more
 - Oversimplified...

"DLC-FT"

Raman Comparison – C14 DLC

XPS: (C14) DLC vs. DLC-F

DLC

DLC-F

XPS: C1s of DLC with 6hr Exposure

XPS: C1s of DLC vs. DLC-F

XPS: C1s of DLC-F vs. DLC-FT

 No change in C-F BE after exposure

ICMCTF 2014

Contact Angle Comparison

- Untreated vs. Fluoro-Functional
- Pre-thermal oxidation exposure

DI Water	Untreated	Fluoro-functional	% Change
C14 DLC on 304SS	75°	119°	+59
DLC on injector needle	101°	132°	+19

Hexadecane	Untreated	Fluoro-functional	% Change
C14 DLC on 304SS	9°	76°	+744
DLC on injector needle	20°	84°	+320

Contact Angle Trends with Thermal Oxidation Exposure: C14 DLC on 304SS

Functionalized DLC-F vs. Untreated DLC

Contact Angle Trends with Thermal Oxidation Exposure: DLC on Needle

Functionalized DLC-F vs. Untreated DLC

Friction Comparisons – C14

	Friction coeff. in Air	Friction coeff. in dry N ₂
DLC	0.18	0.87
DLC; 6hr in N2	0.10	0.58
DLC; 6hr in Air	0.18	0.56
DLC-F (fluoro func.)	0.21	0.77
DLC-FT; 6hr in Air	0.23	0.02

DLC air test

DLC N2 test

440C ball

DLC-FT air test

DLC-FT N2 test

All friction data courtesy of Dr. Seong Kim and Ala' Al-Azizi
The Pennsylvania State University

Conclusions

- Functionalized DLC surface with organofluorosilyl- moiety
 - Improved hydrophobicity
 - Vastly improved oleophobicity
- Stabilized DLC to thermal and oxidative effects without detrimental tribological effects
- Unexpected improvement in dry friction performance after thermal oxidation exposure. Deserves further exploration.

Acknowledgments

- Penn State Materials Research Institute
- Dr. Seong Kim and Ala' Al-Azizi, The Pennsylvania State University