The Characterization of Novel **Carboxysilane Depositions on Stainless Steel Substrates for** Inertness, Wear Resistance, and Corrosion Resistance Applications

Gary Barone, Marty Higgins, David Smith SilcoTek Corporation

Overview

- Use of Coatings
- Selecting Coatings
 - Coating Materials/Properties
 - Durability
 - Corrosion Testing
 - Moisture Resistance
 - Chemical Inertness
- Conclusion

Using Coatings

- Most analytical pathways are stainless steel
 - Great structurally
 - Good corrosion resistance
 - Poor chemical properties for analytical chemists
- Coatings used to improve material properties.
- Industries are demanding harsher services for silicon coatings (like SilcoNert[®] 2000 (Sulfinert).
- Carboxysilane coatings (Dursan[®]) more robust.

Factors Contributing to Poor Sampling Reliability

- Durability/Wear
- Corrosion
- Moisture
- Design

Sampling Probe for Extractive System Gas Conditioning System Analyzers Data Acquisition System

Opacity Monitor

Figure 1: A typical continuous emission monitoring system (CEMS) (U.S. EPA Image)⁴

- Chemical & Material Compatibility/Inertness
- Instrument Compatibility
- Installation

Selecting Coatings

- Fluoropolymers
 - Very inert
 - Very corrosion resistant
 - Broad pH applicability
 - Poor adhesion
 - Poor wear resistance
 - Good to 260°C

- Silicon (SilcoNert® 2000)
 - Very inert
 - Great adhesion
 - No carryover
 - Good corrosion resistance
 - Limited pH range
 - Susceptible to steam cleaning
 - Poor wear resistance
 - Good to 450°C

New Coating

- Carboxysilane (Dursan®)
 - Good inertness
 - Great adhesion
 - No carryover
 - Good corrosion resistance
 - Broad pH applicability
 - Steam cleaning, no problem
 - Good wear resistance
 - Tested to 450°C
 - Still accumulating application data

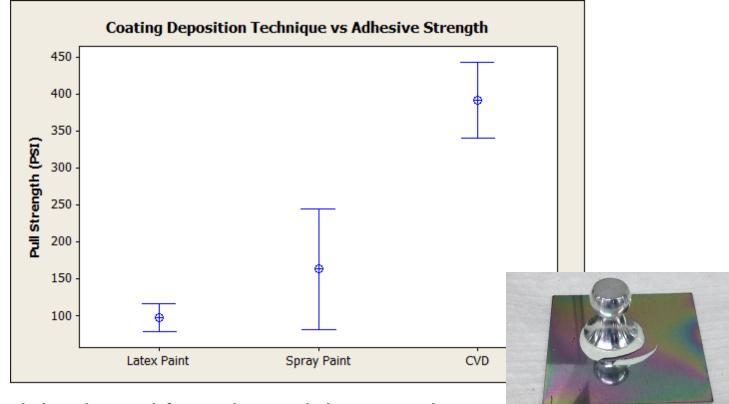
Coating/Material Properties

Property	Silicon (SilcoNert 2000)	Carboxysilane Dursan	PTFE, PFA
Max Temperature	450°C	450°C	260°C
Min Temperature	-196°C	-100°C	-240°C
Low pH limit	0	0	0
High pH limit	7	14	14
Thickness	0.12um to 0.5um	0.5um to 1.0um	25um
Adhesion	Very Good	Very Good	Poor
Wear resistance	90% of Stainless	2 times 316 Stainless	10% of SS (est.)
Moisture contact	72-90°	104-140°	125°
Inertness vs. SS	Excellent	Good	Excellent

Improving wear resistance & Durability

- Equipment and sample conditions can damage surfaces and increase activity.
 - Valve cycling/purging cause delamination
 - Particulate in sample streams
 - Abrasive cleaning
- Existing coatings
 - Prone to wear
 - Easily damaged

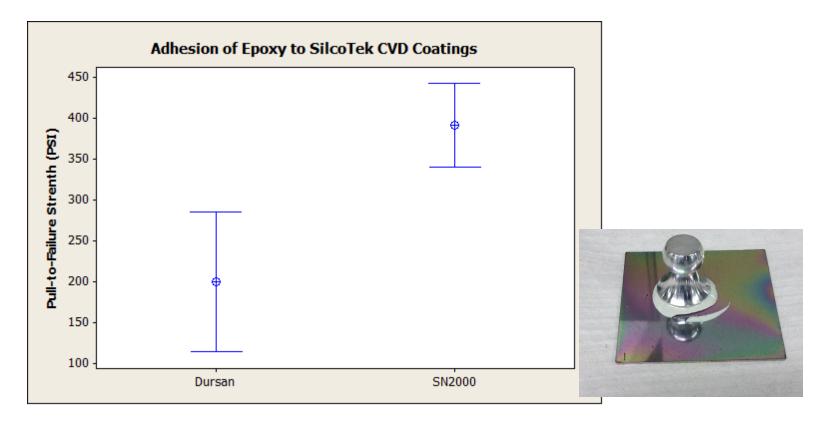
Result: Adsorption & loss of sample


Wear and Friction Data

- Pin on Disc: ASTM G133
- Base substrate is mirror-finish SS 316

	Av	g. Coef	f. Friction	Wear Rate <u>(x10⁻⁵mm³/Nm)</u>
Uncoated SS		0.589		13.810
Carboxysilane (Dursan)		0.378		6.129
Silicon (SilcoNert 2000)		0.7		14.00
	Load	2.0 N		
	Duration	20 min		
	Speed	80 rpm		000
	Radius	3mm		
	Revolutions	1,554		
	Ball Diameter	6mm		
	Ball Material			Courtesy of Nanovea

Inc.


Pull Strength Measurements

• Paints delaminated from the stainless steel

Pull Strength Measurements

• Dursan more "slippery" difficult to bond adhesive. Adhesive bond failed before coating. Demonstrating reduced friction characteristics.

Challenge of Corrosion

- Samples can contain corrosives that quickly attack stainless
 - Hydrochloric acid (HCI)
 - Sulfuric acid (H_2SO_4)
 - Saltwater
- Physical loss of equipment due to corrosion
 - Maintenance
 - Replacement cycles
- Corrosion increases surface activity and particulates
- Silicon coatings susceptible to caustics

Acid Corrosion Resistance

• ASTM G31 Guidelines: <u>6M HCl</u>; 24hr; 23°C

	316L SS	Silicon	Carboxysilane
MPY	181.98	4.32	0.44
Improvement Factor over 316L stainless		42	411

Photo after 19hr exposure

Dursan coated

Silcolloy coated

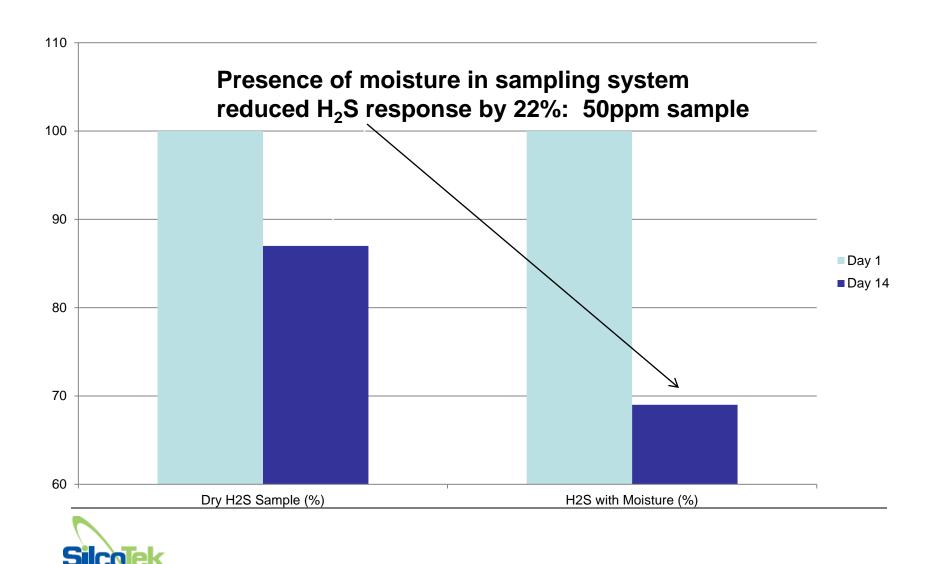
Acid Corrosion Resistance ASTM G31

	5% HF		70% Nitric		85% Phosphoric		25% Sulfuric	
	MPY rate	factor	MPY rate	factor	MPY rate	factor	MPY rate	factor
316 SS	120.00	-	0.78	-	0.62	-	54.64	-
Carboxysilane	80.38	1.49	0.10	7.50	0.08	8.00	5.36	10.19
Silicon	44.26	2.71	0.36	2.14	0.28	2.18	23.62	2.31

Exposure to Caustic Base

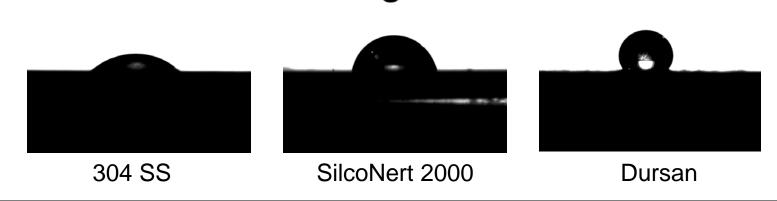
• *1M KOH; 24hr; 22°C*

ASTM G31	316L SS	Silicon	Carboxysilane
MPY	0	3.40	0.01
Improvement Factor	Infinite	Dissolution	261
Over Silicon			



Challenges of Moisture

- Benefits of coating that help release water faster
 - Components less susceptible to corrosion
 - Faster cycle times
 - Increased accuracy
 - Eliminate moisture/sample interaction


Impact of Moisture

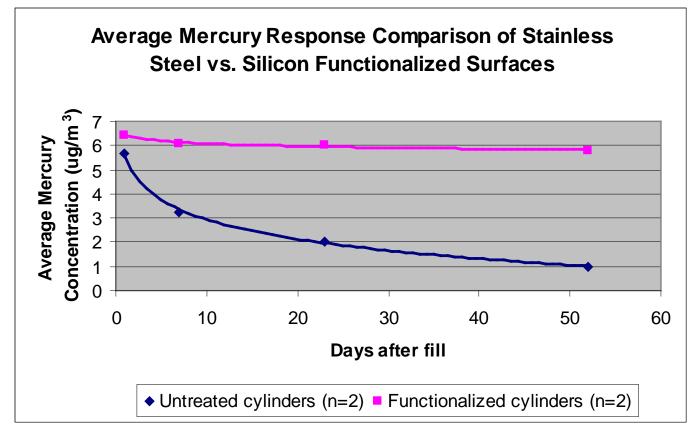
Measuring Hydrophobicity

Kruss K100 Tensiometer Testing on	DI Water	304 SS	SilcoNert 2000	Dursan	PTFE
304 SS ¼" OD tubing	Advancing	36.0	87.3	105.5	125.4
	Receding	5.3	51.5	85.3	84

DI Water Contact Angle Illustrations (advancing) on flat surfaces

Chemical Inertness

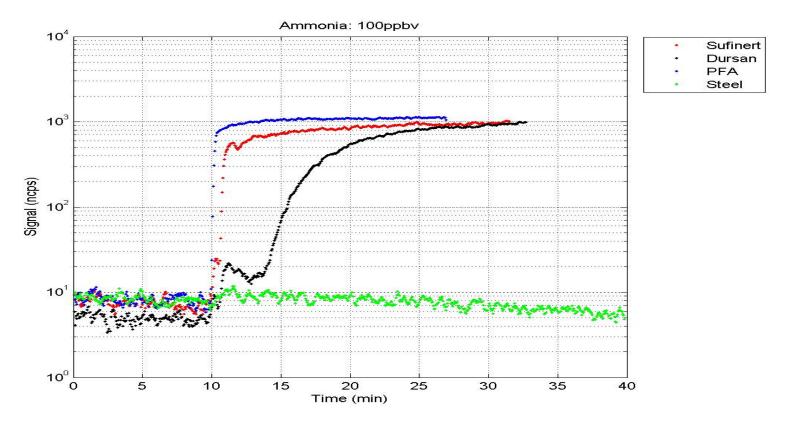
- Stainless Steel:
 - Adsorbs sulfur compounds
 - Causes loss of mercury
 - Demonstrates poor transportability (tailing) of polar organics such as alcohols
 - Adsorbs ammonia
- Need coating that is chemically inert for analytical systems


Total Sulfur Recovery

36ppb & 25ppm, 300cc cylinder

SilcoNert: 36ppb 99%+ recovery Dursan: 25ppm 97% Recovery % Recovery SS 80% loss in 1 day Day

Mercury 50 Day Stability



Courtesy of Spectra Gases Inc.

Ammonia Adsorption

100PPV, 500sccm, 1.8m tubing, min

- Measured PTR-MS signals of ammonia (m17). At t=10min the gas stream was switched in a way
- that it passed additionally the different 1.8m long lines. The PFA line seems to be best for Ammonia, while
- the steel line completely adsorbs the 100ppbv of Ammonia in the sample gas for hours. All lines were 1.8 m,
- not heated (30°C), sample gas flow was 500 sccm (std. ml/min) of 100 ppb of ammonia in N2. Cou

Courtesy of IONIMED Analytik

Selecting Coatings

Factor	Fluoropolymers	Weight	Silicon (SilcoNert)	Weight	Carboxysilane (Dursan)	Weight
Durability	Poor wear resistance		Fair wear resistance		Good wear resistance	
Corrosion	Excellent		Good		Good	
Moisture	Excellent		Good		Excellent	
Inertness	Excellent		Excellent/ no carryover		Good	
Chemical / Material Compatibility	Poor adhesion/ Broad pH range		Excellent adhesion		Excellent	
Instrument Compatibility	Good		Good		Excellent	
Installation	260c max		450c max		450c max	

Conclusion

- Analytical and Process industries demanding increased performance from coating
- Coating selection dictated by application
 - Corrosion resistance
 - Moisture resistance
 - Inertness
 - Wear
- Broad spectrum environments and applications may involve a tradeoff in performance.
 - In field applications, carboxysilane coatings (Dursan) may be the best overall performer.

